Ultrafast time-division demultiplexing of polarization-entangled photons.
نویسندگان
چکیده
Maximizing the information transmission rate through quantum channels is essential for practical implementation of quantum communication. Time-division multiplexing is an approach for which the ultimate rate requires the ability to manipulate and detect single photons on ultrafast time scales while preserving their quantum correlations. Here we demonstrate the demultiplexing of a train of pulsed single photons using time-to-frequency conversion while preserving their polarization entanglement with a partner photon. Our technique converts a pulse train with 2.69 ps spacing to a frequency comb with 307 GHz spacing which may be resolved using diffraction techniques. Our work enables ultrafast multiplexing of quantum information with commercially available single-photon detectors.
منابع مشابه
Ultrafast sources of entangled photons for quantum information processing
Recent advances in quantum information processing (QIP) have enabled practical applications of quantum mechanics in various fields such as cryptography, computation, and metrology. Most of these applications use photons as carriers of quantum information. Therefore, engineering the quantum state of photons is essential for the realization of novel QIP schemes. A practical and flexible technique...
متن کاملOptimizing type-I polarization-entangled photons.
Optical quantum information processing needs ultra-bright sources of entangled photons, especially from synchronizable femtosecond lasers and low-cost cw-diode lasers. Decoherence due to timing information and spatial mode-dependent phase has traditionally limited the brightness of such sources. We report on a variety of methods to optimize type-I polarization-entangled sources--the combined us...
متن کاملHigh yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots
Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. How...
متن کاملGeneration of 10-GHz clock sequential time-bin entanglement.
This letter reports telecom-band sequential time-bin entangled photon-pair generation at a repetition rate of 10 GHz in periodically poled reverse-proton-exchange lithium niobate waveguides based on mode demultiplexing. With up-conversion single-photon detectors, we observed an entangled-photon-pair flux of 313 Hz and a two-photon-interference-fringe visibility of 85.32% without subtraction of ...
متن کاملHyper-entangled states and free-space quantum cryptography
We describe the development of a quantum key distribution (QKD) scheme based on ultrafast laser pumped sources of entangled photon pairs and the engineering of their entanglement properties. Though quantum entanglement has been shown to be a useful resource for quantum key distribution, little work has been carried out in making use of the full range of joint entanglement behavior present in hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 113 16 شماره
صفحات -
تاریخ انتشار 2014